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Magnonic Neurons:

• Feed-forward information propagation 

      -> Non-reciprocal transmission

• Activation

      -> Non-linear transmission

We propose chiral magnonic resonators 
to act as the artificial magnonic neurons.

Can an all magnonic neural network be built?
Chiral coupling arises from the relative sense of rotation between a resonator’s 
precession and a spin wave’s dynamic stray field:

The transmission of spin waves 

by a magnonic neuron 

represents its activation.

We model the transmission of 

spin waves using micromagnetic 

simulations.What are chiral magnonic resonators?

What are the properties of a magnonic neuron?
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Abstract
In this work, we explore chiral magnonic resonators as building blocks of artificial neural networks. Using micromagnetic simulations and analytical modelling, we demonstrate that the first anti-symmetric confined (‘dark’) 

mode of a stripe chiral magnonic resonator may exhibit a strongly nonlinear response when resonantly excited by incoming spin waves, owing to energy concentration. For modest excitation levels, the effect can be 

described in terms of a nonlinear shift of the resonant frequency ('detuning'), which results in amplitude-dependent transmission of monochromatic spin waves. This behaviour can be harnessed to realise a sigmoid-like 

activation, and thus implement artificial neurons in a network linked by spin waves propagating in a linear medium. The nonlinearity is manifested in bistability and hysteresis akin to those occurring in non-linear oscillators 

when the excitation strength exceeds a threshold set by the decay rate of the mode. In magnonic resonators, the latter includes both the Gilbert damping and the radiative decay due to the coupling with the medium. The 

results of our simulations are well described by a phenomenological model in which the nonlinear detuning of the confined mode is quadratic in its amplitude, while the propagation in the medium is linear.
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A Stripe Resonator and Thin Film Methodology
Geometry Thin Film Dispersion Resonator Modes
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Transmission Activation Modelling

Fitting to the Model

Linear Nonlinear

We launch a broadband wave packet:
We compute the transmission coefficient 

as the ratio of the complex Fourier 

amplitudes, averaged in the 𝑦𝑧  cross-

section:

The Gilbert damping  is ramped at 

the film boundaries to suppress 

reflections.

What is the frequency dependence of 𝑻 𝝎 ?

𝑇 𝜔 ≈
ℱ𝜔 𝑀𝑧

ℱ𝜔 𝑀𝑧
ref

cross−
section

ΓR  and ΓL  are radiative 

linewidths to the right and 

to the left, respectively.

We study the transmission of a stripe chiral magnonic resonator spaced to a thin film 

waveguide. We assume permalloy parameters throughout and apply a bias field 

locally to the film to saturate the magnetisation in the backward volume geometry. 

The resonator is saturated by its shape anisotropy. The resonator possesses two 

resonant modes. A lower frequency quasi-uniform mode with approximately uniform 

amplitude and phase, and a higher frequency mode. This higher frequency mode is 

the first anti-symmetric or ‘dark’ mode of the resonator.

How are spin waves transmitted across?

In the linear case we see the curves 

for the transmission for waves 

propagating towards the right and the 

left for the two resonant modes. In 

both cases nearly identical behaviour 

for right-propagating spin waves 

occurs. A sharp Lorentzian dip with 

maximum attenuation of about 10%. 

Ultimately, the character of the 

resonant modes differs but the 

transmission behaviour is very 

similar. We may probe the nonlinear 

behaviour by looking only at dark 

mode resonance.

We now see the transmission curves 

for increasing amplitudes of incident 

spin waves. At low powers (blue and 

black), the transmission experiences 

minimal frequency shifting. At 

moderate powers (light blue) there is 

more detuning, and the curves are 

now asymmetric. At higher powers 

(green to pink), the left edge of the 

curves have become vertical, and the 

curves detuned further. Beyond the 

dashed line, the critical region of 

bistability is entered. Indicated by the 

dashed curves, the transmission has 

developed bistable behaviour.

By driving the resonator at the resonance frequency at higher 

spin wave powers, we observe a sigmoidal-like activation 

response (top left). The shifting of the transmission curve to 

lower frequencies has allowed spin waves at higher amplitudes 

to break through. The snapshot of the dynamic magnetisation 

shows this breakthrough of the spin waves.

Additionally, if we drive the resonator at a frequency below the 

resonance, we create a power limiter (top right). The shifting of 

the transmission curves has now aligned the minima of 

transmission at the lower frequency. The snapshot shows the 

reduction of spin wave amplitude in transmission.

How may these results be modelled?

We can model the local resonator mode 𝜙 as a driven, damped 

harmonic oscillator with cubic nonlinearity:

𝑖
𝜕𝜙(𝑡)

𝜕𝑡
= 𝜔0𝜙 𝑡 − iΓtot𝜙 𝑡 − 𝜆 𝜙 t 2𝜙 𝑡 + A(t)
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Spin Wave
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𝜏R 𝜔, 𝐴 = 1 − 𝑖
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ΓR : Radiative linewidth to the right

ΓL : Radiative linewidth to the left

|𝜙| : Amplitude of precession in the 

resonator

Γtot = Γ0 + ΓL + ΓR
Γ0 : Linewidth due to Gilbert damping

Activation Power Limiting
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